
Forest Night Ride
Project Report
Luis Angel Flores Carrubio
INM376 Computer Graphics
Dr. Eddie Edwards

INTRODUCTION

Forest Night Ride is a driving simulator
game in which the player follows a pre-
programmed non-linear path while
enjoying the world scenery and avoiding
obstacles. The game incorporates
different geometric primitives and
different visual effects in a night forest
environment (figure 1). Several
computer graphics techniques were
implemented to construct the world
which can be seen with different camera
options and speed settings allowing for closer inspection of the environment.

HEIGHTMAP, ROUTE & CAMERA

The heightmap for the world was created using the provided class and grayscale image from the
laboratories. The height scale for the terrain was adjusted, and height values were obtained and
used to render the route correctly. The route was created following the provided path creation
guide based on Catmull-Rom splines. A first attempt on placing the route on the heightmap
involved rendering it at the same height as the terrain. This meant placing control points at the
obtained height values for the terrain however, because of it being incredibly amorphous this
method was discarded. This is because between control points there could be a mountain or
slope, and this resulted in many control points needed to be added for creating a smooth route.
Furthermore, the route does not make for good gameplay experience if it is attached to the
heightmap. Consequently, a solution was found by placing the route some units above the
obtained height values for the terrain (figure 2). This allowed for the creation of a smooth path
without needing to create many control points. These control points were carefully selected by
studying the heightmap which allowed placing the route around rough terrain but incorporating
sharp turns and notable height differences while driving. The route was textured with a mossy
tile that fits with the game forest setting and is supported by trunks of wood given its elevation.

Figure 1. Lighting effects from a spotlight positioned at the
moon's location directing light towards the map.

2

There are four camera options to
choose from including the free
camera already provided with the
template. The added camera views
are first-person, third-person, and
top view. The camera follows the
car and correctly changes position
and viewpoint using the first-
person camera option if the player
changes direction to the left or
right. This was accomplished by
creating a TNB frame and making correct use of it to position the camera and change its viewpoint.
In addition, the car rotates and moves according to the TNB frame as well. To move left or right
the N vector was utilized for the car and camera. The B vector was used given the changes in
elevation and the T vector for the car, camera, and lights to point forward.

PRIMITIVE-BASED OBJECTS, MESHES & LIGHTING

Several meshes are loaded to the
game which include a car, trees,
road barriers, billboard, crates, and
trunks. These are all loaded in the
initialize method and make use of
the main shader for appropriate
lighting. The trees were placed at
selected positions near the road to
simulate a forest. The car, barrier,
and trunks were positioned using
the vertices for the center line, and
offset curves of the route accordingly in odd and even intervals. These also required rotations
using the TNB frame as they are placed further along the path. For primitive based objects, a
tetrahedron was created using a non-indexed geometry approach. Additionally, a cube was
created using indexed geometry by extending the template plane class to use three dimensions
instead of two. However, when applying a texture on these cubes they do not reflect light.
Furthermore, the skybox was created using the provided cube class with appropriate themed
textures. A textured torus was created with indexed geometry and rotates according to the
forward direction of the car. In addition, a second rotating torus with a different texture was
positioned at the starting point of the route as a navigation point (figure 3). Lastly, the provided
plane and sphere classes were used to create the effects using the FBO.

Figure 2. Game route in 3D using height from terrain.

Figure 3. Included primitives and meshes in the game.

3

Figure 4. Different colored spotlights in the game.

Lighting includes seven spotlights with white, blue, red, green, and yellow colors. The white
spotlight is attached to the front of the car and rotates appropriately using the TNB frame in
addition to moving left or right with the car. The car light can be toggled by pressing the
appropriate key (table 1). A second white light is place above one of the tori to provide
illumination. The colored spotlights are slightly pulsating nearby the rectangles and at the starting
point of the track where a yellow light can be found (figure 4). The only light that is used for
ambient illumination is the blue light that is responsible for simulating moonlight. The effect can
be seen in the pyramids and the grass environment that reflect a blueish hue. This moon spotlight
was carefully positioned to point at the map from above (figure 1). Additionally, a slight fog effect
was added to provide realism to the scene and prevent the car spotlight from illuminating far
away objects. This fog also limits the view of the camera and everything outside of the range will
appear black. All the lights have been implemented using the same main shader following the
Blinn-Phong reflection model which means that the lights affect and mix with each other
including the fog effect. The pulsating effect for some of the lights was accomplished by using
the sine function and passing a timer variable to the vertex shader. The vertex shader was used
for making all the calculations that were later passed to the fragment shader which is responsible
for applying textures and outputting appropriate colors.

4

HEAD’S UP DISPLAY, GAMEPLAY & ADV. RENDERING

The HUD includes updated text for speed, number of laps, and crashes using the provided text
shader. It also includes other information for debugging purposes like height, collision distance,
and more information showed by pressing the appropriate key (table 1). The gameplay elements
include crates which the car can collide with meaning that the player must evade them by using
the controls (figure 5). If the player collides with a crate according to the distance formula, it
resets the car and camera position to the starting point of the route and triggers a camera shake
and crash sound. The camera shake was implemented using the sine function and the game
elapsed time. Additionally, the player can change the car speed to go forward or backwards in
the path as well as moving left or right. The speed is limited to 100 mph because a faster speed
will sometimes make the car evade the crates. For the left and right movement of the car, the
use of the N vector from the TNB frame is used for correct placement limited to seven units in a
discrete interval. These events were all handled with assistance of the ProcessEvents function
using Boolean and integer variables to check for conditions. Lastly, a billboard rectangle with a
TV (figure 5) and a sphere (figure 1) were created following the examples provided using an FBO
to show the camera view. These were placed in the world along the route where they can be
appreciated regardless of the camera view.

OPTIONALS

The game incorporates a night forest background music for immersion purposes. Additionally,
the car engine sound can be enabled by pressing the appropriate key and collisions with crates
also produce sound. The game can be played in Fullscreen or windowed mode depending on the
user’s choice.

Figure 5. Crates along the path which the player can collide with.

5

DISCUSSION

Several additions to the game could have been included like screen space techniques, shadows,
and blur effects. An effort for adding these additional effects was considered but it ultimately
required an overhaul of how shaders are handled. However, the created environment showcases
several graphic techniques that blend effectively creating an appropriate aesthetic for the game
with some gameplay elements. Furthermore, other gameplay elements or more crates placed
within the route could provide for an increased difficulty for the game allowing for more
immersion. The obtained knowledge throughout the development of this game will allow for
additional features and advanced techniques to be included in the future.

CONTROLS & RESOURCES

Controls Event
L Turn on/off the car light
C Change the camera view

Up Increase the car speed
Down Decrease the car speed
Right Move the car right
Left Move the car left
ESC Exit the game

I Display information panel
1 Toggle engine sound

Home/End Increase or decrease background sound
Resources Link

Skybox http://haxor.thelaborat.org/resources/texture/skybox/nightsky/
Tree https://free3d.com/3d-model/low-poly-tree-73217.html
Car Obtained from AGT template (Psionic Games)

Barrier https://free3d.com/3d-model/road-barriers-998950.html
Trunks https://free3d.com/3d-model/trunk-wood-342814.html
Crates https://free3d.com/3d-model/container-v1--229361.html

Billboard https://free3d.com/3d-model/bilboard-v1--29854.html
Grass http://www.psionicgames.com/?page_id=26
Route http://texturelib.com/texture/?path=/Textures/wood/burnt/wood_burnt_0004
Cubes https://www.publicdomainpictures.net/pictures/210000/velka/red-texture-

background-14902179577fa.jpg
Tetrahedron https://live.staticflickr.com/28/42366328_2dba7ae11b_b_d.jpg

Torus https://www.stockio.com/free-photo/stone-wall-moss-texture
Heightmap Obtained from module template

Forest Audio https://freesound.org/people/sethlind/sounds/332722/
Crash Audio https://freesound.org/people/Eponn/sounds/420356/

Engine Audio https://freesound.org/people/InspectorJ/sounds/345558/
Table 1. Controls and used resources for the game.

6

