-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecode.py
487 lines (438 loc) · 22.3 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import argparse
import os
#os.environ['CUDA_VISIBLE_DEVICES']='1'
import torch
import torch.nn.functional as F
import numpy as np
import math
import logging
import random
from tqdm import tqdm
from str2bool import str2bool
import itertools
from datetime import datetime
from metric import f1_metric
from transformers import GPT2Tokenizer
from transformers import AdamW
from transformers.optimization import get_linear_schedule_with_warmup
from transformers.optimization import (
get_cosine_with_hard_restarts_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup
)
from torch.utils.data import DataLoader, Dataset
import json
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(description='Pre-training for Knowledge-Grounded Conversation')
# model
parser.add_argument("--debug",default=True,help='debug mode, using small dataset',type=str2bool)
parser.add_argument('--predict',type=str2bool,default=False)
# files
parser.add_argument("--convo_path",type=str,default='/home/futc/persona/convo')
parser.add_argument("--selectedk_path",type=str,default='')
parser.add_argument("--selectedp_path",type=str,default='')
parser.add_argument("--pseudo_path",type=str,default='/home/futc/2021work2/pseudo')
# model
parser.add_argument("--vocab",type=str,default='/home/futc/gpt2')
parser.add_argument("--model",type=str,default='/home/futc/gpt2')
# parser.add_argument("--count_path",type=str,default='/home/futc/2021work2/knowledge_count.json')
# parser.add_argument("--label_path",type=str,default='/home/futc/2021work2/label.json')
# training scheme
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--num_steps', type=int, default=1000000)
parser.add_argument('--accum_step', type=int, default=8)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--clip', type=float, default=2.0)
parser.add_argument('--schedule', type=str, default='linear')
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--adam_epsilon', type=float, default=1e-8)
parser.add_argument('--warmup_steps', type=int, default=500)
parser.add_argument('--num_epochs', type=int, default=3)
# log
parser.add_argument('--print_every', type=int, default=100)
parser.add_argument('--valid_every', type=int, default=10000)
# save
parser.add_argument("--dump_path",type=str,default='/home/futc/2021work2/dump')
parser.add_argument('--exp_name', type=str, default='debug')
parser.add_argument('--log', type=str, default='log')
parser.add_argument('--seed', type=int, default=42)
# length
parser.add_argument("--max_context_length",type=int,default=64)
parser.add_argument("--max_persona_length",type=int,default=64)
parser.add_argument("--max_response_length",type=int,default=64)
parser.add_argument("--max_knowledge_length",type=int,default=64)
parser.add_argument("--n_knowledge",type=int,default=32)
parser.add_argument("--n_persona",type=int,default=32)
# architecture
parser.add_argument("--decoder",type=str,default='ablationp')
# the constitution of prompt
parser.add_argument("--prompt",type=str,default='pseudo')
# generate
parser.add_argument("--min_generate_length",type=int,default=10)
parser.add_argument("--max_generate_length",type=int,default=25)
parser.add_argument("--beamsize",type=int,default=2)
# gpu
parser.add_argument('--gpu_list', type=str, default='4')
parser.add_argument('--gpu_ratio', type=float, default=0.85)
parser.add_argument('--n_device', type=int, default=8)
parser.add_argument('--no_cuda', type=str2bool, default=False)
args = parser.parse_args()
if args.debug:
args.print_every=2
args.valid_every=8
torch.cuda.empty_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
assert args.prompt in ['selected','pseudo']
assert args.decoder in ['v0','v1','ablationp','ablationk']
out_dir = os.path.join(args.dump_path, args.exp_name)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
args.out_dir=out_dir
logger.addHandler(logging.FileHandler(os.path.join(args.out_dir, "log"), 'w'))
logger.info("\nParameters:")
for attr, value in sorted(vars(args).items()):
logger.info("{}={}".format(attr.upper(), value))
class PersonaDataset(Dataset):
def __init__(self,convo_path,selectedp_path,selectedk_path,pseudo_path,mode) -> None:
super(PersonaDataset,self).__init__()
self.examples=[]
self.selected_knowledge=[]
self.selected_persona=[]
assert mode in ['train','eval']
self.mode=mode
for date in os.listdir(convo_path):
if (date=='2015-05' or date=='2015-06') and mode=='train':
continue
if mode=='eval' and date!='2015-05':
continue
fconvo=open(os.path.join(convo_path,date),mode='r',encoding='utf-8')
fpseudo=open(os.path.join(pseudo_path,date),mode='r',encoding='utf-8')
for line1,line2 in zip(fconvo.readlines(),fpseudo.readlines()):
data=json.loads(line1)
author=data['author'][-1]
sid=data['sid']
label=json.loads(line2)
self.examples.append({
'context':data['dialog'][:-1],
'response':data['dialog'][-1],
'klabel':label['klabel'],
'plabel':label['plabel']
})
if args.debug:
break
if mode=='eval' and args.prompt=='selected':
fsk=open(selectedk_path,mode='r',encoding='utf-8')
for line in fsk.readlines():
self.selected_knowledge.append(line.strip('\n'))
fsk.close()
fsp=open(selectedp_path,mode='r',encoding='utf-8')
for line in fsp.readlines():
self.selected_persona.append(line.strip('\n'))
fsp.close()
if args.debug and mode == 'eval':
self.examples=self.examples[:16]
self.selected_persona=self.selected_persona[:16]
self.selected_knowledge=self.selected_knowledge[:16]
logger.info("{} examples {}".format(mode,len(self.examples)))
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
example=self.examples[i]
if self.mode=='eval' and args.prompt=='selected':
return example['context'], example['response'], self.selected_persona[i], self.selected_knowledge[i]
else:
assert example['plabel'] is not None
assert example['klabel'] is not None
return example['context'], example['response'], example['plabel'],example['klabel']
@staticmethod
def collate_fn(batch):
context_list = [item[0] for item in batch]
response_list= [item[1] for item in batch]
persona_list=[item[2] for item in batch]
knowledge_list=[item[3]for item in batch]
return context_list,response_list,persona_list,knowledge_list
class PersonaBatcher(object):
def __init__(self, device, tokenizer, max_context_length,max_response_length,max_knowledge_length,max_persona_length):
self.device=device
self.tokenizer=tokenizer
self.max_context_length=max_context_length
self.max_response_length=max_response_length
self.max_knowledge_length=max_knowledge_length
self.max_persona_length=max_persona_length
# batcher for the v1 and ablation
def __call__(self, context_list,response_list,persona_list,knowledge_list,mode='train'):
assert len(context_list)==len(response_list)==len(persona_list)==len(knowledge_list)
bs=len(context_list)
batch_input_id=[]
batch_label=[]
for i in range(bs):
input_id=self.tokenizer.encode(' '.join(context_list[i]))[:self.max_context_length]
label=[-100]*len(input_id)
if mode=='train':
input_id+=self.tokenizer.encode(response_list[i])[:self.max_response_length]
label+=self.tokenizer.encode(response_list[i])[:self.max_response_length]
batch_input_id.append(input_id)
batch_label.append(label)
longest=max([len(batch_input_id[i])for i in range(bs)])
for i in range(bs):
batch_input_id[i].extend([self.tokenizer.pad_token_id]*(longest-len(batch_input_id[i])))
batch_label[i].extend([-100]*(longest-len(batch_label[i])))
batch_knowledge_id=self.tokenizer.batch_encode_plus(knowledge_list,truncation=True,max_length=self.max_knowledge_length,padding='longest',return_tensors='pt')['input_ids']
batch_persona_id=self.tokenizer.batch_encode_plus(persona_list,truncation=True,max_length=self.max_persona_length,padding='longest',return_tensors='pt')['input_ids']
batch_input_id=torch.tensor(batch_input_id,dtype=torch.long,device=self.device)
batch_label=torch.tensor(batch_label,dtype=torch.long,device=self.device)
batch_knowledge_id=batch_knowledge_id.cuda()
batch_persona_id=batch_persona_id.cuda()
if batch_knowledge_id.shape[-1]>=1024:
logger.info("too long batch knowledge id!!!")
batch_knowledge_id=batch_knowledge_id[:,1023]
if batch_persona_id.shape[-1]>=1024:
logger.info("too long batch knowledge id!!!")
batch_persona_id=batch_persona_id[:,1023]
return{
'input_id':batch_input_id,
'knowledge_id':batch_knowledge_id,
'persona_id':batch_persona_id,
'label':batch_label
}
# the batcher of v0
# def __call__(self, context_list,response_list,persona_list,knowledge_list):
# assert len(context_list)==len(response_list)==len(persona_list)==len(knowledge_list)
# bs=len(context_list)
# batch_input_id=[]
# batch_label=[]
# for i in range(bs):
# input_id = self.tokenizer.encode(' '.join(context_list[i]) +' '+ persona_list[i].strip(' ') +' '+ knowledge_list[i].strip(' ')+' ',truncation=True,max_length=self.max_context_length+self.max_knowledge_length+self.max_persona_length)
# label = [-100]*len(input_id)
# input_id.extend(self.tokenizer.encode(response_list[i],truncation=True,max_length=self.max_response_length))
# label.extend(self.tokenizer.encode(response_list[i],truncation=True,max_length=self.max_response_length))
# batch_input_id.append(input_id)
# batch_label.append(label)
# longest=max([len(id) for id in batch_input_id])
# for i in range(bs):
# if len(batch_input_id[i])==longest:
# continue
# padding_length=longest-len(batch_input_id[i])
# batch_input_id[i].extend([self.tokenizer.pad_token_id]*padding_length)
# batch_label[i].extend([-100]*padding_length)
# batch_input_id=torch.tensor(batch_input_id,dtype=torch.long,device=self.device)
# batch_label=torch.tensor(batch_label,dtype=torch.long,device=self.device)
# return {
# 'input_id':batch_input_id,
# 'label':batch_label
# }
def recall_f1(scores,knowledges,responses):
count=[len(k) for k in knowledges]
# all equals to the number of context
assert len(knowledges)==len(responses)
# all equals to the total number of knowledge sentences in every case
assert sum(count)==len(scores)
n=len(knowledges)
preds=[]
for i in range(n):
score=scores[:len(knowledges[i])]
scores=scores[len(knowledges[i]):]
knowledge=knowledges[i]
pred=knowledge[score.index(max(score))]
preds.append(pred)
return f1_metric(preds,responses)
def recall_metric(scores):
r1,r2,r5,r10=0.,0.,0.,0.
#count_path=r'/home/futc/cmudog/'+'train'+'_knowledge_count.json'
#label_path=r'/home/futc/cmudog/'+'train'+'_label_index.json'
with open(args.count_path,mode='r',encoding='utf-8')as f:
knowledge_count=json.load(f)
with open(args.label_path,mode='r',encoding='utf-8')as f:
label=json.load(f)
assert len(scores)==np.array(knowledge_count).sum()
assert len(knowledge_count)==len(label)
for i in range(len(knowledge_count)):
score=scores[:knowledge_count[i]]
scores=scores[knowledge_count[i]:]
order=np.argsort(score)[::-1]
gold=label[i]
#gold=0 if correct_first else label[i]
if gold in order[:1]:
r1+=1
if gold in order[:2]:
r2+=1
if gold in order[:5]:
r5+=1
if gold in order[:10]:
r10+=1
return r1/len(knowledge_count),r2/len(knowledge_count),r5/len(knowledge_count),r10/len(knowledge_count)
# Build dataset
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
logger.info("Create training dataset begin... | %s " % time_str)
train_dataset=PersonaDataset(args.convo_path,args.selectedp_path,args.selectedk_path,args.pseudo_path,mode='train')
eval_dataset=PersonaDataset(args.convo_path,args.selectedp_path,args.selectedk_path,args.pseudo_path,mode='eval')
train_loader=DataLoader(train_dataset,batch_size=args.batch_size,shuffle=True,collate_fn=PersonaDataset.collate_fn)
eval_loader=DataLoader(eval_dataset,batch_size=args.eval_batch_size,shuffle=False,collate_fn=PersonaDataset.collate_fn)
train_loader=itertools.cycle(train_loader)
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
logger.info("Create training dataset end... | %s " % time_str)
tokenizer=GPT2Tokenizer.from_pretrained(args.vocab)
tokenizer.add_special_tokens({'pad_token':'[PAD]','sep_token':'[SEP]'})
batcher = PersonaBatcher(device, tokenizer, args.max_context_length, args.max_response_length, args.max_knowledge_length,args.max_persona_length)
if args.decoder=='v1':
from model.reimpl_gpt2v1 import GPT2LMHeadModel
model=GPT2LMHeadModel.from_pretrained(args.model)
elif args.decoder=='v0':
from model.reimpl_gpt2v0 import GPT2LMHeadModel
model=GPT2LMHeadModel.from_pretrained(args.model)
elif args.decoder=='ablationk':
from model.reimpl_gpt2_ablationk import GPT2LMHeadModel
model=GPT2LMHeadModel.from_pretrained(args.model)
elif args.decoder=='ablationp':
from model.reimpl_gpt2_ablationp import GPT2LMHeadModel
model=GPT2LMHeadModel.from_pretrained(args.model)
else:
# TODO: add other tricks and implementation in decoder side
raise NotImplementedError
model.resize_token_embeddings(len(tokenizer))
# semip_model=BertModel(configuration)
# if args.semip_model:
# reloaded=torch.load(args.semip_model)['state_dict']
# semip_model.load_state_dict(reloaded,strict='True')
#priorp_model.to(device)
#priork_model.to(device)
model.to(device)
no_decay = ["bias", "LayerNorm.weight"]
model_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
model_optimizer = AdamW(model_parameters, lr=args.lr, eps=args.adam_epsilon)
#dualpk_optimizer = AdamW(dualpk_parameters, lr=args.lr, eps=args.adam_epsilon)
total_steps = args.num_epochs * (len(train_dataset) / (args.batch_size * args.accum_step))
# scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
if args.schedule == 'linear':
model_scheduler = get_linear_schedule_with_warmup(model_optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
elif args.schedule == 'cosine':
model_scheduler = get_cosine_schedule_with_warmup(model_optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
def train_step(global_step):
loss_total = 0.0
for _ in range(args.accum_step):
context_list,response_list,persona_list,knowledge_list = next(train_loader)
model.train()
batch_dict=batcher(context_list,response_list,persona_list,knowledge_list)
input_id=batch_dict['input_id']
knowledge_id=batch_dict['knowledge_id']
persona_id=batch_dict['persona_id']
label=batch_dict['label']
if args.decoder=='v1':
loss=model(input_ids=input_id,attention_mask=(input_id!=tokenizer.pad_token_id),knowledge_id=knowledge_id,knowledge_attention_mask=(knowledge_id!=tokenizer.pad_token_id),persona_id=persona_id,persona_attention_mask=(persona_id!=tokenizer.pad_token_id),labels=label,return_dict=True)['loss']
elif args.decoder=='ablationp':
loss=model(input_ids=input_id,attention_mask=(input_id!=tokenizer.pad_token_id),knowledge_id=knowledge_id,knowledge_attention_mask=(knowledge_id!=tokenizer.pad_token_id),labels=label,return_dict=True)['loss']
elif args.decoder=='ablationk':
loss=model(input_ids=input_id,attention_mask=(input_id!=tokenizer.pad_token_id),persona_id=persona_id,persona_attention_mask=(persona_id!=tokenizer.pad_token_id),labels=label,return_dict=True)['loss']
elif args.decoder=='v0':
loss=model(input_ids=input_id,attention_mask=(input_id!=tokenizer.pad_token_id),labels=label,return_dict=True)['loss']
loss_total+=loss.item()
loss=loss/args.accum_step
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_([p for p in model.parameters() if p.requires_grad], args.clip)
if grad_norm >= 1e2:
logger.info('WARNING : Exploding Gradients {:.2f}'.format(grad_norm))
model_optimizer.step()
model_scheduler.step()
model_optimizer.zero_grad()
if global_step % args.print_every == 0 and global_step != 0:
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
logger.info("Step: %d \t| ks_loss: %.3f \t| lr: %.8f \t| %s" % (
global_step, loss_total, model_scheduler.get_lr()[0], time_str
))
# sys.stdout.flush()
def predict_step(global_step):
model.eval()
hypothesis=[]
count=0
for context_list,response_list,persona_list,knowledge_list in eval_loader:
with torch.no_grad():
batch_dict=batcher(context_list,response_list,persona_list,knowledge_list,mode='eval')
input_id=batch_dict['input_id']
knowledge_id=batch_dict['knowledge_id']
persona_id=batch_dict['persona_id']
label=batch_dict['label']
if args.decoder=='v1':
modelout=model.generate_beam_search(input_ids=input_id,\
attention_mask=(input_id!=tokenizer.pad_token_id), \
knowledge_id=knowledge_id,\
knowledge_attention_mask=(knowledge_id!=tokenizer.pad_token_id),\
persona_id=persona_id,\
persona_attention_mask=(persona_id!=tokenizer.pad_token_id), \
cur_len=input_id.shape[1], \
min_length=input_id.shape[1]+args.min_generate_length, \
max_length=input_id.shape[1]+args.max_generate_length, \
eos_token_id=tokenizer.eos_token_id, \
pad_token_id=tokenizer.pad_token_id, \
num_beams=args.beamsize, \
vocab_size=len(tokenizer))
elif args.decoder=='ablationk':
modelout=model.generate_beam_search(input_ids=input_id,\
attention_mask=(input_id!=tokenizer.pad_token_id), \
persona_id=persona_id,\
persona_attention_mask=(persona_id!=tokenizer.pad_token_id), \
cur_len=input_id.shape[1], \
min_length=input_id.shape[1]+args.min_generate_length, \
max_length=input_id.shape[1]+args.max_generate_length, \
eos_token_id=tokenizer.eos_token_id, \
pad_token_id=tokenizer.pad_token_id, \
num_beams=args.beamsize, \
vocab_size=len(tokenizer))
elif args.decoder=='ablationp':
modelout=model.generate_beam_search(input_ids=input_id,\
attention_mask=(input_id!=tokenizer.pad_token_id), \
knowledge_id=knowledge_id,\
knowledge_attention_mask=(knowledge_id!=tokenizer.pad_token_id),\
cur_len=input_id.shape[1], \
min_length=input_id.shape[1]+args.min_generate_length, \
max_length=input_id.shape[1]+args.max_generate_length, \
eos_token_id=tokenizer.eos_token_id, \
pad_token_id=tokenizer.pad_token_id, \
num_beams=args.beamsize, \
vocab_size=len(tokenizer))
elif args.decoder=='v0':
modelout=model.generate_beam_search(input_ids=input_id,\
attention_mask=(input_id!=tokenizer.pad_token_id), \
cur_len=input_id.shape[1], \
min_length=input_id.shape[1]+args.min_generate_length, \
max_length=input_id.shape[1]+args.max_generate_length, \
eos_token_id=tokenizer.eos_token_id, \
pad_token_id=tokenizer.pad_token_id, \
num_beams=args.beamsize, \
vocab_size=len(tokenizer))
generated=tokenizer.batch_decode(modelout,skip_special_tokens=True)
hypothesis.extend(generated)
if len(hypothesis)%1000==0:
logger.info("decode finish {}".format(len(hypothesis)))
f=open(os.path.join(args.out_dir,'{}step_result'.format(global_step)),mode='w',encoding='utf-8')
for hyp in hypothesis:
f.write(hyp.replace('\n','')+'\n')
f.close()
if not args.predict:
model.save_pretrained(os.path.join(args.out_dir,'{}step_model'.format(global_step)))
best_f1 = -1.
if args.predict:
predict_step(0)
exit()
for i in range(args.num_steps):
torch.cuda.empty_cache()
train_step(i + 1)
if (i + 1) % args.valid_every == 0:
predict_step(i+1)