-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretrain_dual.py
604 lines (525 loc) · 28.5 KB
/
pretrain_dual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import argparse
import os
#os.environ['CUDA_VISIBLE_DEVICES']='1'
import torch
import torch.nn.functional as F
import numpy as np
import math
import logging
import random
from tqdm import tqdm
from str2bool import str2bool
import itertools
from datetime import datetime
from metric import f1_metric
from transformers import BertForSequenceClassification
from transformers import BertModel
from transformers import BertConfig
from transformers import AdamW, BertTokenizer
from transformers.optimization import get_linear_schedule_with_warmup
from transformers.optimization import (
get_cosine_with_hard_restarts_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup
)
from torch.utils.data import DataLoader, Dataset
import json
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(description='Pre-training for Knowledge-Grounded Conversation')
# model
parser.add_argument("--debug",default=True,help='debug mode, using small dataset',type=str2bool)
parser.add_argument('--predict',type=str2bool,default=False)
# files
parser.add_argument("--convo_path",type=str,default='/home/futc/persona/convo')
parser.add_argument("--persona_path",type=str,default='/home/futc/persona/history')
parser.add_argument("--knowledge_path",type=str,default='/home/futc/persona/knowledge')
parser.add_argument("--pseudo_path",type=str,default='/home/futc/2021work2/pseudo')
# model
parser.add_argument("--vocab",type=str,default='/home/futc/bert-base-uncased')
parser.add_argument("--dualkp_model",type=str,default='/home/futc/bert-base-uncased')# (P|CRK) dual learning model
parser.add_argument("--dualpk_model",type=str,default='/home/futc/bert-base-uncased')# (K|CRP) dual learning model
# parser.add_argument("--count_path",type=str,default='/home/futc/2021work2/knowledge_count.json')
# parser.add_argument("--label_path",type=str,default='/home/futc/2021work2/label.json')
# training scheme
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--eval_batch_size', type=int, default=4)
parser.add_argument('--num_steps', type=int, default=1000000)
parser.add_argument('--accum_step', type=int, default=16)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--clip', type=float, default=2.0)
parser.add_argument('--schedule', type=str, default='linear')
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--adam_epsilon', type=float, default=1e-8)
parser.add_argument('--warmup_steps', type=int, default=500)
parser.add_argument('--num_epochs', type=int, default=3)
# log
parser.add_argument('--print_every', type=int, default=100)
parser.add_argument('--valid_every', type=int, default=10000)
# save
parser.add_argument("--dump_path",type=str,default='/home/futc/2021work2/dump')
parser.add_argument('--exp_name', type=str, default='debug')
parser.add_argument('--log', type=str, default='log')
parser.add_argument('--seed', type=int, default=42)
# length
parser.add_argument("--max_context_length",type=int,default=64)
parser.add_argument("--max_persona_length",type=int,default=64)
parser.add_argument("--max_response_length",type=int,default=64)
parser.add_argument("--max_knowledge_length",type=int,default=64)
parser.add_argument("--n_knowledge",type=int,default=32)
parser.add_argument("--n_persona",type=int,default=32)
# architecture
parser.add_argument("--loss",type=str,default='ce')
parser.add_argument("--n_layer",type=int,default=6)
# gpu
parser.add_argument('--gpu_list', type=str, default='4')
parser.add_argument('--gpu_ratio', type=float, default=0.85)
parser.add_argument('--n_device', type=int, default=8)
parser.add_argument('--no_cuda', type=str2bool, default=False)
args = parser.parse_args()
if args.debug:
args.print_every=2
args.valid_every=8
torch.cuda.empty_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
out_dir = os.path.join(args.dump_path, args.exp_name)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
args.out_dir=out_dir
logger.addHandler(logging.FileHandler(os.path.join(args.out_dir, "log"), 'w'))
logger.info("\nParameters:")
for attr, value in sorted(vars(args).items()):
logger.info("{}={}".format(attr.upper(), value))
class PersonaDataset(Dataset):
def __init__(self,convo_path,persona_path,knowledge_path,pseudo_path,mode,n_knowledge,n_persona,debug=False) -> None:
super(PersonaDataset,self).__init__()
self.examples=[]
self.n_knowledge=n_knowledge
self.n_persona=n_persona
assert mode in ['train','eval']
for date in os.listdir(convo_path):
if (date=='2015-05' or date=='2015-06') and mode=='train':
continue
if mode=='eval' and date!='2015-05':
continue
fconvo=open(os.path.join(convo_path,date),mode='r',encoding='utf-8')
fper=open(os.path.join(persona_path,date),mode='r',encoding='utf-8')
fknow=open(os.path.join(knowledge_path,date),mode='r',encoding='utf-8')
fpseudo=open(os.path.join(pseudo_path,date),mode='r',encoding='utf-8')
know_dict=json.load(fknow)
per_dict=json.load(fper)
for line1,line2 in zip(fconvo.readlines(),fpseudo.readlines()):
data=json.loads(line1)
author=data['author'][-1]
sid=data['sid']
label=json.loads(line2)
# persona=per_dict[author].copy()
# persona.pop(persona.index(label['plabel']))
# persona=persona[:self.n_persona-1]
# persona.append(label['plabel'])
# random.shuffle(persona)
# knowledge=know_dict[sid].copy()
# knowledge.pop(knowledge.index(label['klabel']))
# knowledge=knowledge[:self.n_knowledge-1]
# knowledge.append(label['klabel'])
# random.shuffle(knowledge)
self.examples.append({
'context':data['dialog'][:-1],
'response':data['dialog'][-1],
'knowledge':know_dict[sid],
'persona':per_dict[author],
'klabel':label['klabel'],
'plabel':label['plabel']
})
if debug:
break
if debug and mode == 'eval':
self.examples=self.examples[:16]
logger.info("{} examples {}".format(mode,len(self.examples)))
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
example=self.examples[i]
random.shuffle(example['persona'])
random.shuffle(example['knowledge'])
# note that the context and persona is a list, but knowledge is a string, a single piece of knowledge
return example['context'], example['response'],example['persona'], example['knowledge'], example['plabel'],example['klabel']
@staticmethod
def collate_fn(batch):
context_list = [item[0] for item in batch]
response_list= [item[1] for item in batch]
persona_list = [item[2] for item in batch]
knowledge_list = [item[3] for item in batch]
plabel_list= [item[4] for item in batch]
klabel_list= [item[5] for item in batch]
return context_list,response_list,persona_list,knowledge_list,plabel_list,klabel_list
class PersonaBatcher(object):
def __init__(self, device, tokenizer, n_knowledge, n_persona, max_context_length,max_response_length,max_knowledge_length,max_persona_length):
self.device=device
self.tokenizer=tokenizer
self.n_knowledge=n_knowledge
self.n_persona=n_persona
self.max_context_length=max_context_length
self.max_response_length=max_response_length
self.max_knowledge_length=max_knowledge_length
self.max_persona_length=max_persona_length
#assert glue in ['p|crk','k|crp','p|c','k|cp','p|cr']
def load(self, context_list, response_list, persona_list, knowledge_list, plabel_list, klabel_list):
assert len(context_list)==len(response_list)==len(persona_list)==len(knowledge_list)==len(plabel_list)==len(klabel_list)
bs=len(context_list)
self.context_id_list=[self.tokenizer.encode(' '.join(context_list[i]),add_special_tokens=False)[:self.max_context_length] for i in range(bs)]
self.response_id_list=[self.tokenizer.encode(response_list[i],add_special_tokens=False)[:self.max_response_length] for i in range(bs)]
self.persona_id_list=[]
self.knowledge_id_list=[]
longest_persona=0
longest_knowledge=0
for i in range(bs):
persona=persona_list[i]
knowledge=knowledge_list[i]
# WARNING: We could not use random shuffle at here
# it is a list, every element is a single piece of persona id
persona_id=[self.tokenizer.encode(p,add_special_tokens=False)[:self.max_persona_length] for p in persona[:self.n_persona] ]
longest_persona=max(max([len(p) for p in persona_id]),longest_persona)
knowledge_id=[self.tokenizer.encode(k,add_special_tokens=False)[:self.max_knowledge_length] for k in knowledge[:self.n_knowledge] ]
longest_knowledge=max(max([len(k) for k in knowledge_id]),longest_knowledge)
self.persona_id_list.append(persona_id)
self.knowledge_id_list.append(knowledge_id)
# padding
longest_context=max([len(self.context_id_list[i]) for i in range(bs)])
longest_response=max([len(self.response_id_list[i]) for i in range(bs)])
for i in range(bs):
padding_length=longest_context-len(self.context_id_list[i])
self.context_id_list[i].extend([self.tokenizer.pad_token_id]*padding_length)
padding_length=longest_response-len(self.response_id_list[i])
self.response_id_list[i].extend([self.tokenizer.pad_token_id]*padding_length)
for k in self.knowledge_id_list[i]:
k.extend([self.tokenizer.pad_token_id]*(longest_knowledge-len(k)))
while len(self.knowledge_id_list[i]) < self.n_knowledge:
self.knowledge_id_list[i].append([self.tokenizer.pad_token_id]*longest_knowledge)
for p in self.persona_id_list[i]:
p.extend([self.tokenizer.pad_token_id]*(longest_persona-len(p)))
while len(self.persona_id_list[i]) < self.n_persona:
self.persona_id_list[i].append([self.tokenizer.pad_token_id]*longest_persona)
self.bs=bs
self.longest_context=longest_context
self.longest_response=longest_response
self.longest_persona=longest_persona
self.longest_knowledge=longest_knowledge
def __call__(self,glue,golden_knowledge_list=None,golden_persona_list=None):
assert glue in ['p|crk','k|crp','k|cp','p|cr','p|c']
batch_input_id=[]
batch_segment_id=[]
if glue == 'p|crk':
assert len(golden_knowledge_list)==self.bs
bs=len(golden_knowledge_list)
if isinstance(golden_knowledge_list[0],str):
golden_knowledge_id_list=[self.tokenizer.encode(golden_knowledge_list[i],add_special_tokens=False)[:self.max_knowledge_length] for i in range(bs)]
longest_goldenk=max([len(golden_knowledge_id_list[i]) for i in range(bs)])
for golden_knowedge_id in golden_knowledge_id_list:
golden_knowedge_id.extend([self.tokenizer.pad_token_id]*(longest_goldenk-len(golden_knowedge_id)))
else:
raise NotImplementedError
for i in range(bs):
input_id=[]
segment_id=[]
for j in range(self.n_persona):
input_id.append([self.tokenizer.cls_token_id]+self.context_id_list[i] +[self.tokenizer.sep_token_id] + self.response_id_list[i] +[self.tokenizer.sep_token_id] + golden_knowledge_id_list[i]+[self.tokenizer.sep_token_id]+self.persona_id_list[i][j]+[self.tokenizer.sep_token_id])
segment_id.append([0]*(1 +self.longest_context +1 + self.longest_response +1 + longest_goldenk +1 )+[1]*(self.longest_persona+1))
batch_input_id.append(input_id)
batch_segment_id.append(segment_id)
elif glue == 'k|crp':
assert len(golden_persona_list)==self.bs
bs=len(golden_persona_list)
if isinstance(golden_persona_list[0],str):
golden_persona_id_list=[self.tokenizer.encode(golden_persona_list[i],add_special_tokens=False)[:self.max_persona_length] for i in range(bs)]
longest_goldenp=max([len(golden_persona_id_list[i]) for i in range(bs)])
for golden_persona_id in golden_persona_id_list:
golden_persona_id.extend([self.tokenizer.pad_token_id]*(longest_goldenp-len(golden_persona_id)))
else:
golden_persona_id_list=golden_persona_list
for i in range(bs):
input_id=[]
segment_id=[]
for j in range(self.n_knowledge):
input_id.append([self.tokenizer.cls_token_id] + self.context_id_list[i] +[self.tokenizer.sep_token_id] + self.response_id_list[i] +[self.tokenizer.sep_token_id]+ golden_persona_id_list[i] +[self.tokenizer.sep_token_id]+ self.knowledge_id_list[i][j]+[self.tokenizer.sep_token_id])
segment_id.append([0]*(self.longest_context+self.longest_response+longest_goldenp+4)+ [1]*(1+self.longest_knowledge))
batch_input_id.append(input_id)
batch_segment_id.append(segment_id)
elif glue=='k|cp':
assert len(golden_persona_list)==self.bs
bs=len(golden_persona_list)
if isinstance(golden_persona_list[0],str):
golden_persona_id_list=[self.tokenizer.encode(golden_persona_list[i],add_special_tokens=False)[:self.max_persona_length] for i in range(bs)]
longest_goldenp=max([len(golden_persona_id_list[i]) for i in range(bs)])
for golden_persona_id in golden_persona_id_list:
golden_persona_id.extend([self.tokenizer.pad_token_id]*(longest_goldenp-len(golden_persona_id)))
else:
raise NotImplementedError
for i in range(bs):
input_id=[]
segment_id=[]
for j in range(self.n_knowledge):
input_id.append([self.tokenizer.cls_token_id]+ self.context_id_list[i] +[self.tokenizer.sep_token_id]+ golden_persona_id_list[i] +[self.tokenizer.sep_token_id]+self.knowledge_id_list[i][j]+[self.tokenizer.pad_token_id])
segment_id.append([0]*(self.longest_context+longest_goldenp+3)+ [1]*(self.longest_knowledge+1))
batch_input_id.append(input_id)
batch_segment_id.append(segment_id)
elif glue=='p|cr':
bs=self.bs
for i in range(bs):
input_id=[]
segment_id=[]
for j in range(self.n_persona):
input_id.append([self.tokenizer.cls_token_id]+ self.context_id_list[i] +[self.tokenizer.sep_token_id]+ self.response_id_list[i]+ [self.tokenizer.sep_token_id] +self.persona_id_list[i][j]+[self.tokenizer.pad_token_id])
segment_id.append([0]*(self.longest_context+self.longest_response+3)+ [1]*(self.longest_persona+1))
batch_input_id.append(input_id)
batch_segment_id.append(segment_id)
elif glue=='p|c':
bs=self.bs
for i in range(bs):
input_id=[]
segment_id=[]
for j in range(self.n_persona):
input_id.append([self.tokenizer.cls_token_id]+ self.context_id_list[i]+[self.tokenizer.sep_token_id]+self.persona_id_list[i][j]+[self.tokenizer.pad_token_id])
segment_id.append([0]*(self.longest_context+2)+ [1]*(self.longest_persona+1))
batch_input_id.append(input_id)
batch_segment_id.append(segment_id)
batch_input_id=torch.tensor(batch_input_id,dtype=torch.long,device=self.device)
batch_segment_id=torch.tensor(batch_segment_id,dtype=torch.long,device=self.device)
return {
'input_id':batch_input_id,
'segment_id':batch_segment_id
}
def recall_f1(scores,knowledges,responses):
count=[len(k) for k in knowledges]
# all equals to the numbert of context
assert len(knowledges)==len(responses)
# all equals to the total number of knowledge sentences in every case
assert sum(count)==len(scores)
n=len(knowledges)
preds=[]
for i in range(n):
score=scores[:len(knowledges[i])]
scores=scores[len(knowledges[i]):]
knowledge=knowledges[i]
pred=knowledge[score.index(max(score))]
preds.append(pred)
return f1_metric(preds,responses)
def recall_metric(scores):
r1,r2,r5,r10=0.,0.,0.,0.
#count_path=r'/home/futc/cmudog/'+'train'+'_knowledge_count.json'
#label_path=r'/home/futc/cmudog/'+'train'+'_label_index.json'
with open(args.count_path,mode='r',encoding='utf-8')as f:
knowledge_count=json.load(f)
with open(args.label_path,mode='r',encoding='utf-8')as f:
label=json.load(f)
assert len(scores)==np.array(knowledge_count).sum()
assert len(knowledge_count)==len(label)
for i in range(len(knowledge_count)):
score=scores[:knowledge_count[i]]
scores=scores[knowledge_count[i]:]
order=np.argsort(score)[::-1]
gold=label[i]
#gold=0 if correct_first else label[i]
if gold in order[:1]:
r1+=1
if gold in order[:2]:
r2+=1
if gold in order[:5]:
r5+=1
if gold in order[:10]:
r10+=1
return r1/len(knowledge_count),r2/len(knowledge_count),r5/len(knowledge_count),r10/len(knowledge_count)
# Output directory for models and summaries
#print('Writing to {}\n'.format(out_dir))
#save_hparams(args, os.path.join(out_dir, 'hparams'))
# Checkpoint directory
# checkpoint_dir = os.path.join(out_dir, 'checkpoints')
# checkpoint_prefix = os.path.join(checkpoint_dir, 'model')
# if not os.path.exists(checkpoint_dir):
# os.makedirs(checkpoint_dir)
# sys.stdout.flush()
# Build dataset
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
logger.info("Create training dataset begin... | %s " % time_str)
train_dataset=PersonaDataset(args.convo_path,args.persona_path,args.knowledge_path,args.pseudo_path,mode='train',n_knowledge=args.n_knowledge,n_persona=args.n_persona,debug=args.debug)
eval_dataset=PersonaDataset(args.convo_path,args.persona_path,args.knowledge_path,args.pseudo_path,mode='eval',n_knowledge=args.n_knowledge,n_persona=args.n_persona,debug=args.debug)
train_loader=DataLoader(train_dataset,batch_size=args.batch_size,shuffle=True,collate_fn=PersonaDataset.collate_fn)
eval_loader=DataLoader(eval_dataset,batch_size=args.eval_batch_size,shuffle=False,collate_fn=PersonaDataset.collate_fn)
train_loader=itertools.cycle(train_loader)
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
logger.info("Create training dataset end... | %s " % time_str)
tokenizer=BertTokenizer.from_pretrained(args.vocab)
tokenizer.add_special_tokens({'pad_token':'[PAD]','sep_token':'[SEP]'})
batcher = PersonaBatcher(device, tokenizer, args.n_knowledge, args.n_persona, args.max_context_length, args.max_response_length, args.max_knowledge_length,args.max_persona_length)
configuration=BertConfig(num_hidden_layers=args.n_layer)
dualkp_model=BertForSequenceClassification.from_pretrained(args.dualkp_model,config=configuration)
dualkp_model.resize_token_embeddings(len(tokenizer))
dualpk_model=BertForSequenceClassification.from_pretrained(args.dualpk_model,config=configuration)
dualpk_model.resize_token_embeddings(len(tokenizer))
dualkp_model.to(device)
dualpk_model.to(device)
no_decay = ["bias", "LayerNorm.weight"]
dualkp_parameters = [
{
"params": [p for n, p in dualkp_model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in dualkp_model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
dualpk_parameters = [
{
"params": [p for n, p in dualpk_model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in dualpk_model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
dualkp_optimizer = AdamW(dualkp_parameters, lr=args.lr, eps=args.adam_epsilon)
dualpk_optimizer = AdamW(dualpk_parameters, lr=args.lr, eps=args.adam_epsilon)
total_steps = args.num_epochs * (len(train_dataset) / (args.batch_size * args.accum_step))
# scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
if args.schedule == 'linear':
dualkp_scheduler = get_linear_schedule_with_warmup(dualkp_optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
dualpk_scheduler = get_linear_schedule_with_warmup(dualpk_optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
elif args.schedule == 'cosine':
dualkp_scheduler = get_cosine_schedule_with_warmup(dualkp_optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
dualpk_scheduler= get_cosine_schedule_with_warmup(dualpk_optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps)
def train_step(global_step):
ks_loss_total = 0.0
for _ in range(args.accum_step):
context_list, response_list, persona_list, knowledge_list, plabel_list,klabel_list = next(train_loader)
#The dual learning part
dualpk_model.train()
dualkp_model.train()
batcher.load(context_list,response_list,persona_list,knowledge_list,plabel_list,klabel_list)
batch_dict= batcher('k|crp',None,plabel_list)
input_id=batch_dict['input_id']
segment_id=batch_dict['segment_id']
assert input_id.dim()==3 and input_id.shape==segment_id.shape
bs,n_know,seq_len=input_id.shape
#(bs*n_know,2)
dual_klogits=dualpk_model(input_ids=input_id.view(-1,seq_len),attention_mask=input_id.view(-1,seq_len)!=tokenizer.pad_token_id,token_type_ids=segment_id.view(-1,seq_len),return_dict=True)['logits']
#(bs,n_know)
dual_klogits=dual_klogits.view(bs,n_know,-1)[:,:,1]
#(bs)
targetk=torch.tensor([knowledge_list[i].index(klabel_list[i]) for i in range(bs)],dtype=torch.long,device=dual_klogits.device)
if args.loss=='ce':
kloss=F.cross_entropy(dual_klogits,targetk)
elif args.loss=='mm':
kloss=F.multi_margin_loss(dual_klogits,targetk)
ks_loss_total+=kloss.item()
kloss=kloss/args.accum_step
kloss.backward()
batch_dict=batcher('p|crk',klabel_list,None)
input_id=batch_dict['input_id']
segment_id=batch_dict['segment_id']
assert input_id.dim()==3 and input_id.shape==segment_id.shape
bs,n_per,seq_len=input_id.shape
dual_plogits=dualkp_model(input_ids=input_id.view(-1,seq_len),attention_mask=input_id.view(-1,seq_len)!=tokenizer.pad_token_id,token_type_ids=segment_id.view(-1,seq_len),return_dict=True)['logits']
dual_plogits=dual_plogits.view(bs,n_per,-1)[:,:,1]
targetp=torch.tensor([persona_list[i].index(plabel_list[i]) for i in range(bs)],dtype=torch.long,device=device)
if args.loss=='ce':
ploss=F.cross_entropy(dual_plogits,targetp)
elif args.loss=='mm':
ploss=F.multi_margin_loss(dual_plogits,targetp)
ks_loss_total+=ploss.item()
ploss=ploss/args.accum_step
ploss.backward()
grad_norm1 = torch.nn.utils.clip_grad_norm_([p for p in dualkp_model.parameters() if p.requires_grad], args.clip)
grad_norm2 = torch.nn.utils.clip_grad_norm_([p for p in dualpk_model.parameters() if p.requires_grad], args.clip)
if grad_norm1 >= 1e2 or grad_norm2 >1e2:
logger.info('WARNING : Exploding Gradients {:.2f} {:.2f}'.format(grad_norm1,grad_norm2))
dualkp_optimizer.step()
dualkp_scheduler.step()
dualkp_optimizer.zero_grad()
dualpk_optimizer.step()
dualpk_scheduler.step()
dualpk_optimizer.zero_grad()
if global_step % args.print_every == 0 and global_step != 0:
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
logger.info("Step: %d \t| ks_loss: %.3f \t| lr: %.8f \t| %s" % (
global_step, ks_loss_total, dualpk_scheduler.get_lr()[0], time_str
))
# sys.stdout.flush()
def predict_step(global_step):
#if split == 'test_seen':
# test_loader = test_seen_loader
#else:
# raise ValueError
#dualkp_model.eval()
dualpk_model.eval()
all=0
hit1=0
count=0
with torch.no_grad():
for context_list,response_list,persona_list,knowledge_list, plabel_list,klabel_list in eval_loader:
batcher.load(context_list,response_list,persona_list,knowledge_list,plabel_list,klabel_list)
batch_dict=batcher('k|crp',None,plabel_list)
input_id=batch_dict['input_id']
segment_id=batch_dict['segment_id']
assert input_id.dim()==3 and input_id.shape==segment_id.shape
bs,n_know,seq_len=input_id.shape
logits = dualpk_model(input_ids=input_id.view(-1,seq_len),attention_mask=input_id.view(-1,seq_len)!=tokenizer.pad_token_id,token_type_ids=segment_id.view(-1,seq_len),return_dict=True)['logits']
logits = logits.view(bs,n_know,-1)[:,:,1]
count += 1
if count % 1000 == 0:
logger.info("eval finishing {}".format(count))
bs=len(context_list)
ref=torch.tensor([knowledge_list[i].index(klabel_list[i]) for i in range(bs)],dtype=torch.long,device=device)
hyp=torch.max(logits,dim=1)[1]
all+=len(ref)
hit1+=torch.sum(hyp==ref,dim=0).item()
logger.info("from p infer k, the hit at 1 is {:.4f}".format(hit1/all))
all=0
hit1=0
count=0
with torch.no_grad():
for context_list,response_list,persona_list,knowledge_list, plabel_list,klabel_list in eval_loader:
batcher.load(context_list,response_list,persona_list,knowledge_list,plabel_list,klabel_list)
batch_dict=batcher('p|crk',klabel_list,None)
input_id=batch_dict['input_id']
segment_id=batch_dict['segment_id']
assert input_id.dim()==3 and input_id.shape==segment_id.shape
bs,n_per,seq_len=input_id.shape
logits = dualkp_model(input_ids=input_id.view(-1,seq_len),attention_mask=input_id.view(-1,seq_len)!=tokenizer.pad_token_id,token_type_ids=segment_id.view(-1,seq_len),return_dict=True)['logits']
logits = logits.view(bs,n_per,-1)[:,:,1]
count += 1
if count % 1000 == 0:
logger.info("eval finishing {}".format(count))
bs=len(context_list)
ref=torch.tensor([persona_list[i].index(plabel_list[i]) for i in range(bs)],dtype=torch.long,device=device)
hyp=torch.max(logits,dim=1)[1]
all+=len(ref)
hit1+=torch.sum(hyp==ref,dim=0).item()
logger.info("from k infer p, the hit at 1 is {:.4f}".format(hit1/all))
# with open(os.path.join(args.out_dir, 'score-iter-{}.txt'.format( global_step)), 'w', encoding='utf-8') as f:
# for label, score in zip(labels, scores):
# f.write('{}\t{}\n'.format(label, score))
dualpk_model.save_pretrained(os.path.join(args.out_dir,'{}step_dualpk_model'.format(global_step)))
dualkp_model.save_pretrained(os.path.join(args.out_dir,'{}step_dualkp_model'.format(global_step)))
#torch.save(dualpk_model,os.path.join(args.out_dir,'{}step_dualpk_model'.format(global_step)))
#checkpoint_dir=os.path.join(args.out_dir,'{}step_model'.format(global_step))
#torch.save(dualkp_model,os.path.join(args.out_dir,'{}step_dualkp_model'.format(global_step)))
logger.info("Saved model checkpoint \n")
#logger.info("hit at 1 is {:.4f}".format(hit1/all))
best_f1 = -1.
if args.predict:
predict_step(0)
#logger.info("predict result: the f1 between predict knowledge and response: {:.6f}".format(f1))
exit()
for i in range(args.num_steps):
train_step(i + 1)
if (i + 1) % args.valid_every == 0:
predict_step(i+1)