-
Notifications
You must be signed in to change notification settings - Fork 193
/
Copy pathtraining_utils.py
321 lines (277 loc) · 14.1 KB
/
training_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from functools import partial
from typing import Any, Dict, List
import numpy as np
from rl4lms.data_pools.text_generation_pool import Sample
from rl4lms.envs.text_generation.env import TextGenEnv
from rl4lms.envs.text_generation.evaluation_utils import evaluate_on_samples
from rl4lms.envs.text_generation.utils_supervised import evaluate_on_samples as evaluate_supervised
from rl4lms.envs.text_generation.logging_utils import Tracker
from rl4lms.envs.text_generation.registry import (DataPoolRegistry,
MetricRegistry,
RewardFunctionRegistry,
PolicyRegistry,
AlgorithmRegistry,
WrapperRegistry)
from rl4lms.envs.text_generation.reward import RewardFunction
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import SubprocVecEnv
from transformers import (AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
Trainer,
TrainingArguments,
DataCollatorForLanguageModeling,
DataCollatorForSeq2Seq)
from rl4lms.envs.text_generation.utils_supervised import (get_datasets_for_causal,
get_datasets_for_seq2seq,
tokenize_causal,
tokenize_seq2seq,
EvalCallack)
from rl4lms.envs.text_generation.warm_start import TrainerWarmStartMixin
def build_tokenizer(tokenizer_config: Dict[str, Any]):
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_config["model_name"])
if tokenizer.pad_token is None and tokenizer_config.get("pad_token_as_eos_token", True):
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = tokenizer_config.get(
"padding_side", "left")
tokenizer.truncation_side = tokenizer_config.get(
"truncation_side", "left")
return tokenizer
def build_reward_fn(reward_config: Dict[str, Any]):
reward_fn = RewardFunctionRegistry.get(reward_config["id"],
reward_config.get("args", {}))
return reward_fn
def build_metrics(metric_configs: List[Dict[str, Any]]):
metrics = [MetricRegistry.get(metric_config["id"], metric_config.get("args", {}))
for metric_config in metric_configs]
return metrics
def build_datapool(datapool_config: Dict[str, Any]):
def _get_datapool_by_split(split: str):
kwargs = datapool_config.get("args", {})
kwargs["split"] = split
dp_split = DataPoolRegistry.get(datapool_config["id"], kwargs)
return dp_split
train_datapool = _get_datapool_by_split("train")
val_datapool = _get_datapool_by_split("val")
test_datapool = _get_datapool_by_split("test")
samples_by_split = {
"train": [(sample, weight)
for sample, weight in train_datapool],
"val": [sample for sample, _ in val_datapool],
"test": [sample for sample, _ in test_datapool]
}
return samples_by_split
def build_env(env_config: Dict[str, Any],
reward_fn: RewardFunction,
tokenizer: AutoTokenizer,
train_samples: List[Sample]):
# vectoried env
env_kwargs = {
"reward_function": reward_fn,
"tokenizer": tokenizer,
"samples": train_samples,
}
env_kwargs = {**env_kwargs, **env_config.get("args", {})}
env = make_vec_env(TextGenEnv,
n_envs=env_config.get(
"n_envs", 1),
vec_env_cls=SubprocVecEnv,
env_kwargs=env_kwargs)
return env
def build_alg(alg_config: Dict[str, Any],
env: TextGenEnv,
tracker: Tracker,
policy_state: Dict[str, Any],
alg_state: Dict[str, Any]):
# TBD - move these to a registry once the experimentation is done
# Also switch to Sb3 algos when possible with minimal code adaptations
policy_config = alg_config["policy"]
policy_cls = PolicyRegistry.get(policy_config["id"])
alg_cls = AlgorithmRegistry.get(alg_config["id"])
policy_args = policy_config["args"]
policy_args["state_dict"] = policy_state
alg_kwargs = {
"policy": policy_cls,
"env": env,
"policy_kwargs": policy_args,
}
alg_kwargs = {**alg_kwargs, **alg_config.get("args")}
wrapper = WrapperRegistry.get(alg_config["id"])
alg = wrapper(alg_cls, alg_kwargs,
alg_config["kl_div"]["coeff"], tracker,
alg_config["kl_div"].get("target_kl", None),
alg_config["kl_div"].get("norm_reward", False))
alg.load_from_dict(alg_state)
return alg
class OnPolicyTrainer(TrainerWarmStartMixin):
"""
A generic trainer for training LMs with onpolicy algorithms from SB3
"""
def __init__(self,
tokenizer_config: Dict[str, Any],
datapool_config: Dict[str, Any],
reward_config: Dict[str, Any],
env_config: Dict[str, Any],
on_policy_alg_config: Dict[str, Any],
train_eval_config: Dict[str, Any],
tracker: Tracker = None,
experiment_name: str = ''
):
self._tokenizer_config = tokenizer_config
self._datapool_config = datapool_config
self._reward_config = reward_config
self._env_config = env_config
self._on_policy_alg_config = on_policy_alg_config
self._train_eval_config = train_eval_config
self._tracker = tracker
self._experiment_name = experiment_name
self._setup()
def _setup(self):
# load trainer state from available previous checkpoint if available
self.load_trainer_state(self._tracker)
# build components
self._tokenizer = build_tokenizer(self._tokenizer_config)
self._reward_fn = build_reward_fn(self._reward_config)
self._metrics = build_metrics(
self._train_eval_config.get("metrics", []))
self._samples_by_split = build_datapool(
self._datapool_config)
self._env = build_env(self._env_config, self._reward_fn,
self._tokenizer, self._samples_by_split["train"])
self._alg = build_alg(self._on_policy_alg_config,
self._env, self._tracker,
self._policy_state_dict,
self._alg_state_dict)
# extract train params
self._max_episode_length = self._env_config["args"]["max_episode_length"]
self._max_prompt_length = self._env_config["args"]["max_prompt_length"]
self._eval_batch_size = self._train_eval_config["eval_batch_size"]
self._n_iters = int(self._train_eval_config["n_iters"])
self._n_steps_per_iter = self._env.num_envs * self._alg.n_steps
# gen kwargs for evaluation (if it is different from rollout gen kwargs)
self._eval_gen_kwargs = self._train_eval_config.get(
"generation_kwargs", None)
def _evaluate_on_datapools(self, epoch: int,
splits: List[str] = ["val", "test"]):
for split in splits:
evaluate_on_samples(policy=self._alg.policy,
tokenizer=self._tokenizer,
samples=self._samples_by_split[split],
batch_size=self._eval_batch_size,
max_prompt_length=self._max_prompt_length,
metrics=self._metrics,
epoch=epoch,
split_name=split,
tracker=self._tracker,
gen_kwargs=self._eval_gen_kwargs)
def train_and_eval(self):
# evaluate on val and test set before fine-tuning once
iter_start = self._trainer_state["current_iter"]
self._evaluate_on_datapools(epoch=iter_start)
# train for given number of iters
for epoch in range(iter_start, self._n_iters):
# current state
self._trainer_state["current_iter"] = epoch
# inner rollout and learn loop for on-policy algorithm
self._alg.learn(self._n_steps_per_iter)
# save the policy checkpoint
if (epoch + 1) % self._train_eval_config.get("save_every", 20) == 0:
self.save_trainer_state(
self._tracker, self._alg.policy, self._trainer_state)
# evaluate on val set in the given intervals
if (epoch + 1) % self._train_eval_config["eval_every"] == 0:
self._evaluate_on_datapools(epoch=epoch, splits=["val"])
# finally evaluate on val and test samples
self._evaluate_on_datapools(epoch=epoch)
# save model here - we save only the language model
if self._tracker is not None:
self._tracker.save_auto_model(
self._alg.policy.get_language_model())
class SupervisedTrainer:
"""
A supervised trainer to train LMs (causal and seq2seq) on text generation tasks (wrapper on HF trainer)
"""
def __init__(self,
tokenizer_config: Dict[str, Any],
datapool_config: Dict[str, Any],
train_eval_config: Dict[str, Any],
alg_config: Dict[str, Any],
tracker: Tracker = None
):
self._tokenizer_config = tokenizer_config
self._datapool_config = datapool_config
self._train_eval_config = train_eval_config
self._alg_config = alg_config
self._tracker = tracker
self._setup()
def _evaluate_on_datapools(self, epoch: int,
splits: List[str] = ["val", "test"]):
for split in splits:
evaluate_supervised(model=self._model,
tokenizer=self._tokenizer,
samples=self._samples_by_split[split],
batch_size=self._eval_batch_size,
max_prompt_length=self._max_prompt_length,
metrics_config_dict=self._metrics_config_dict,
epoch=epoch,
split_name=split,
tracker=self._tracker,
generation_kwargs=self._gen_kwargs
)
def _setup(self):
self._tokenizer = build_tokenizer(self._tokenizer_config)
self._metrics_config_dict = self._train_eval_config.get("metrics")
self._samples_by_split = build_datapool(
self._datapool_config)
self._train_dataset = get_datasets_for_causal(
self._samples_by_split["train"]) if self._alg_config[
"model_type"] == "causal" else get_datasets_for_seq2seq(self._samples_by_split["train"])
preprocess_fn = tokenize_causal if self._alg_config[
"model_type"] == "causal" else tokenize_seq2seq
preprocess_fn = partial(preprocess_fn, tokenizer=self._tokenizer)
self._tokenized_dataset = self._train_dataset.map(
preprocess_fn, batched=True,
remove_columns=self._train_dataset.column_names)
model_cls = AutoModelForCausalLM if self._alg_config[
"model_type"] == "causal" else AutoModelForSeq2SeqLM
self._gen_kwargs = self._alg_config["generation_kwargs"]
self._model = model_cls.from_pretrained(self._alg_config["model_name"])
self._model.parallelize()
self._eval_batch_size = self._train_eval_config["eval_batch_size"]
# setting max prompt length
self._max_prompt_length = self._tokenizer_config.get(
"max_length", self._tokenizer.model_max_length)
if (self._alg_config["model_type"] == "causal") and ((self._max_prompt_length + self._gen_kwargs["max_new_tokens"]) > self._tokenizer.model_max_length):
self._max_prompt_length = self._max_prompt_length - \
self._gen_kwargs["max_new_tokens"]
self._eval_callback = EvalCallack(self._samples_by_split["val"],
self._gen_kwargs,
self._eval_batch_size,
self._tokenizer,
self._metrics_config_dict,
self._max_prompt_length,
self._tracker)
train_args = self._alg_config["training_args"]
train_args["output_dir"] = self._tracker.checkpoint_base_path
train_args["seed"] = np.random.randint(1e+2) # random seed
self._train_args = TrainingArguments(**train_args)
data_collator = DataCollatorForLanguageModeling(self._tokenizer, mlm=False) if self._alg_config[
"model_type"] == "causal" else DataCollatorForSeq2Seq(self._tokenizer, self._model)
self._trainer = Trainer(model=self._model,
tokenizer=self._tokenizer,
args=self._train_args,
data_collator=data_collator,
train_dataset=self._tokenized_dataset,
callbacks=[self._eval_callback])
def train_and_eval(self):
# evaluate on val and test set before fine-tuning once
self._evaluate_on_datapools(epoch=0)
# train using HF trainer
self._trainer.train()
# finally evaluate on val and test samples
self._evaluate_on_datapools(epoch=self._train_args.num_train_epochs)
# save model here - we save only the language model
if self._tracker is not None:
self._tracker.save_auto_model(
self._model)