![]() |
Main results |
Model | 2ppl | 3ppl | 4ppl | 5ppl | 6ppl | 7ppl | 8ppl |
---|---|---|---|---|---|---|---|
o3-mini-high | 0.99 | 0.98 | 0.97 | 0.95 | 0.94 | 0.89 | 0.83 |
o1-2024-12-17 | 0.83 | 0.51 | 0.38 | 0.38 | 0.35 | 0.30 | 0.20 |
GPT-4o | 0.68 | 0.57 | 0.49 | 0.32 | 0.23 | 0.21 | 0.11 |
Deepseek-Math-7b | 0.35 | 0.21 | 0.08 | 0.06 | 0.02 | 0.00 | 0.00 |
Qwen2.5-7B-Instruct-1M | 0.49 | 0.40 | 0.25 | 0.11 | 0.02 | 0.06 | 0.01 |
Qwen2.5-7B-Logic-RL (ours) | 0.99 | 0.99 | 0.94 | 0.92 | 0.91 | 0.80 | 0.67 |
conda create -n logic python=3.9
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121
pip3 install vllm==0.6.3 ray
pip3 install flash-attn --no-build-isolation
pip install -e . # For verl integration
pip install wandb IPython matplotlib
You can directly use /data.
For your own data generation, here's a demo:
python ./examples/data_preprocess/kk.py \
--local_dir {processed_data_path} \
--data_path {raw_data_path}
python ./examples/data_preprocess/kk.py \
--template_type=qwen-instruct \
--local_dir {processed_data_path} \
--data_path {raw_data_path}
conda activate logic
bash main_grpo.sh # 4×A100 80G
Component | Location |
---|---|
Reward Modeling | verl/utils/reward_score/kk.py |
Data Preprocessing | examples/data_preprocess/kk.py |
@misc{xie2025logicrlunleashingllmreasoning,
title={Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning},
author={Tian Xie and Zitian Gao and Qingnan Ren and Haoming Luo and Yuqian Hong and Bryan Dai and Joey Zhou and Kai Qiu and Zhirong Wu and Chong Luo},
year={2025},
eprint={2502.14768},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.14768},
}